Finding sperm cells under an optical microscope is a task which is time-consuming and difficult for a human being. This study shows how convolutional neural networks can be used to speed up the process. Two networks were tested based on the VGG19 architecture with a resulting accuracy of over 90%. Human oversight is still necessary to rule out false positives. The oversight is aided by a simple visual guide that can be provided to the overseeing experts which helps determine the accuracy of any given result.
BI Norwegian Business School, Norwegian University of Science and Technology
Technological University Dublin
Technological University Dublin
Technological University Dublin
Zurich Institute of Forensic Medicine
Adhiyamaan College of Engineering
Australian Institute of Criminology
Auckland University of Technology
Humboldt Universitat zu Berlin
Nalla Malla Engineering College, Galgotias University, Vellore Institute of Technology
Uskudar University Medical Faculty, Istanbul, Turkey
University of Edinburgh and George Mason University
ITU/UNESCO Broadband Commission for Sustainable Development
University of New Haven / Digital Forensic Research Workshop
Institute of Electrical and Electronics Engineers (IEEE) and Mississippi State University
Department of Psychology, University of Gothenburg