The aim of this research is to identify biometric traits of dorsal hand images, which are the most commonly documented aspect of perpetrator in child sexual abuse imagery. In this work, the researchers propose hand-based person identification by learning both global and local deep feature representations. Using Global and Part-Aware Network (GPA-Net), the researchers created global and local branches on the conv-layer for learning robust discriminative global and part-level features. Similar research has been conducted at Auckland University.
BI Norwegian Business School, Norwegian University of Science and Technology
Technological University Dublin
Technological University Dublin
Technological University Dublin
Norwegian Business School and Norwegian University of Science and Technology
Zurich Institute of Forensic Medicine
Adhiyamaan College of Engineering
Australian Institute of Criminology
Auckland University of Technology
Humboldt Universitat zu Berlin
Nalla Malla Engineering College, Galgotias University, Vellore Institute of Technology
Uskudar University Medical Faculty, Istanbul, Turkey
University of Edinburgh and George Mason University
ITU/UNESCO Broadband Commission for Sustainable Development
University of New Haven / Digital Forensic Research Workshop
Institute of Electrical and Electronics Engineers (IEEE) and Mississippi State University
Department of Psychology, University of Gothenburg