As the increasing volume of abuse related posts shared on social media is of interest for the public health sector and family welfare organisations to monitor public health, this study aims to identify such posts and differentiate between child abuse and domestic abuse. Researchers first analysed psycholinguistic, textual and somatic features in social media posts disclosing child abuse and domestic abuse in order find out what characterises such posts, and then deployed machine learning classifiers to examine the extracted features’ predictive power. The abuse related posts had higher proportions for features such as anxiety, anger, sadness, sexual health, and death, and carried a lot of negative emotion.
World Childhood Foundation
Bracket Foundation and UNICRI Centre for AI and Robotics
BI Norwegian Business School, Norwegian University of Science and Technology
University of Pennsylvania Columbia University
B. S. Abdur Rahman Crescent Institute of Science and Technology
King Faisal Specialist Hospital and Research Centre Princess Nora bint Abdul Rahman University Mississippi State University
Technological University Dublin
Technological University Dublin
Technological University Dublin
Zurich Institute of Forensic Medicine
Adhiyamaan College of Engineering
The Economist Intelligence Unit
Australian Institute of Criminology
Auckland University of Technology
Humboldt Universitat zu Berlin
Nalla Malla Engineering College, Galgotias University, Vellore Institute of Technology
Uskudar University Medical Faculty, Istanbul, Turkey
University of Edinburgh and George Mason University
The Economist Intelligence Unit
ITU/UNESCO Broadband Commission for Sustainable Development
University of New Haven / Digital Forensic Research Workshop
Institute of Electrical and Electronics Engineers (IEEE) and Mississippi State University
Department of Psychology, University of Gothenburg